🚨 AI Incident Response
Develop comprehensive incident response procedures for AI security threats and system compromises
🎯 Learning Objectives
- Design AI-specific incident response procedures
- Implement threat detection and classification systems
- Execute containment and eradication strategies
- Develop recovery and lessons learned processes
- Create communication protocols for AI incidents
📚 Core Concepts
1. AI Incident Classification
Understanding different types of AI security incidents and their severity levels.
Incident Types
- Adversarial Attacks: Targeted manipulation of AI models
- Data Poisoning: Malicious training data injection
- Model Theft: Unauthorized access to AI models
- Privacy Breaches: Unauthorized data access
- Bias Exploitation: Manipulation of model biases
Severity Levels
Critical
Complete system compromise, data breach, or safety risk
High
Significant performance degradation or security threat
Medium
Moderate impact on operations or security
Low
Minor issues with minimal impact
2. Incident Response Lifecycle
Six-phase approach to handling AI security incidents effectively.
1. Preparation
Build capabilities, train teams, create procedures
2. Identification
Detect and confirm security incidents
3. Containment
Isolate affected systems and prevent spread
4. Eradication
Remove threats and vulnerabilities
5. Recovery
Restore systems and normal operations
6. Lessons Learned
Analyze incident and improve processes
🔧 Implementation Strategies
1. Incident Detection Framework
Comprehensive monitoring and alerting system for AI security incidents.
class AIIncidentDetector:
def __init__(self, monitoring_config):
self.monitoring_config = monitoring_config
self.detectors = {
'adversarial': AdversarialDetector(),
'data_drift': DataDriftDetector(),
'performance': PerformanceDetector(),
'privacy': PrivacyViolationDetector()
}
def detect_incident(self, model_data, input_data, predictions):
"""Detect potential AI security incidents"""
incidents = []
for detector_type, detector in self.detectors.items():
result = detector.analyze(model_data, input_data, predictions)
if result['is_incident']:
incidents.append({
'type': detector_type,
'severity': result['severity'],
'confidence': result['confidence'],
'details': result['details'],
'timestamp': time.time()
})
return incidents
def classify_incident(self, incident):
"""Classify incident severity and type"""
severity_mapping = {
'critical': ['model_compromise', 'data_breach', 'safety_violation'],
'high': ['adversarial_attack', 'performance_degradation'],
'medium': ['data_drift', 'privacy_concern'],
'low': ['anomaly_detected', 'minor_performance_issue']
}
for severity, types in severity_mapping.items():
if incident['type'] in types:
return severity
return 'unknown'
2. Automated Response System
Automated containment and initial response capabilities.
class AutomatedResponseSystem:
def __init__(self, response_policies):
self.policies = response_policies
self.actions = {
'isolate_model': self.isolate_model,
'block_inputs': self.block_inputs,
'switch_fallback': self.switch_fallback,
'alert_team': self.alert_team
}
def execute_response(self, incident):
"""Execute automated response based on incident type"""
policy = self.policies.get(incident['type'], {})
actions = policy.get('actions', [])
executed_actions = []
for action in actions:
if action in self.actions:
result = self.actions[action](incident)
executed_actions.append({
'action': action,
'result': result,
'timestamp': time.time()
})
return executed_actions
def isolate_model(self, incident):
"""Isolate compromised model from production traffic"""
# Implementation details
return {'status': 'isolated', 'model_id': incident['model_id']}
def switch_fallback(self, incident):
"""Switch to fallback model"""
# Implementation details
return {'status': 'switched', 'fallback_model': 'model_v2'}
📋 Response Procedures
Critical Incident Response
Step 1: Immediate Assessment (0-15 minutes)
- Activate incident response team
- Assess scope and impact
- Determine severity level
- Implement immediate containment
Step 2: Containment (15-60 minutes)
- Isolate affected systems
- Preserve evidence
- Notify stakeholders
- Document initial findings
Step 3: Investigation (1-24 hours)
- Forensic analysis
- Root cause identification
- Impact assessment
- Threat actor analysis